Changes in the basement membrane zone components during skeletal muscle fiber degeneration and regeneration
نویسندگان
چکیده
The basement membrane of skeletal muscle fibers is believed to persist unchanged during myofiber degeneration and act as a tubular structure within which the regeneration of new myofibers occurs. In the present study we describe macromolecular changes in the basement membrane zone during muscle degeneration and regeneration, as monitored by immunofluorescence using specific antibodies against types IV and V collagen, laminin, and heparan sulfate proteoglycan and by the binding of concanavalin A (Con A). Skeletal muscle regeneration was induced by autotransplantation of the extensor digitorum longus muscle in rats. After this procedure, the myofibers degenerate; this is followed by myosatellite cell activation, proliferation, and fusion, resulting in the formation of new myotubes that mature into myofibers. In normal muscle, the distribution of types IV and V collagen, laminin, heparan sulfate proteoglycan, and Con A binding was seen in the pericellular basement membrane region. In autotransplanted muscle, the various components of the basement membrane zone disappeared, leaving behind some unidentifiable component that still bound Con A. Around the regenerated myotubes a new basement membrane (zone) reappeared, which persisted during maturation of the regenerating muscle. The distribution of various basement membrane components in the regenerated myofibers was similar to that seen in the normal muscle. Based on our present and previous study (Gulati, A.K., A.H. Reddi, and A.A. Zalewski, 1982, Anat. Rec. 204:175-183), it appears that some of the original basement membrane zone components disappear during myofiber degeneration and initial regeneration. As a new basement membrane develops, its components reappear and persist in the mature myofibers. We conclude that skeletal muscle fiber basement membrane (zone) is not a static structure as previously thought, but rather that its components change quite rapidly during myofiber degeneration and regeneration.
منابع مشابه
Effects of ionic parameters on behavior of a skeletal muscle fiber model
All living cells have a membrane which separates inside the cell from it's outside. There is a potential difference between inside and outside of the cell. This potential difference will change during an action potential. It is quite common to peruse action potentials of skeletal muscle fibers with the Hodgkin-Huxley model. Since Hodgkin and Huxley summarized some controlling currents like inwa...
متن کاملRoles of ADAM8 in elimination of injured muscle fibers prior to skeletal muscle regeneration
Skeletal muscle regeneration requires processes different from developmental myogenesis. One important difference is a requirement of inflammatory reactions prior to regenerative myogenesis, by which injured muscle fibers must be eliminated to make new myotubes. In this study, we show that efficient elimination of injured muscle fibers during regeneration requires ADAM8, a member of a disintegr...
متن کاملHeparan sulfate proteoglycans are increased during skeletal muscle regeneration: requirement of syndecan-3 for successful fiber formation.
Skeletal muscle regeneration is a highly complex and regulated process that involves muscle precursor proliferation and differentiation and probably requires the participation of heparin binding growth factors such as FGFs, HGF and TGFbeta. Heparan sulfate proteoglycans, key components of cell-surfaces and ECM, modulate growth factor activities and influence cell growth and differentiation. The...
متن کاملElectron Microscopic Studies of Satellite Cells in the Cardiac Muscle of Brachyura.
During the course of an electron microscopic study of the skeletal muscle fiber of frogs, Mauro (1961) discovered the presence of peculiar cells, lying between the plasma membrane and the basement membrane of the muscle fiber, and called them satellite cells. According to him, upon alerting other investigators to this finding, similar cells were found in electron micrographs of other skeletal m...
متن کاملLaminin, fibronectin, and collagen in synaptic and extrasynaptic portions of muscle fiber basement membrane
Light and electron microscope immunohistochemical methods were used to study the distribution of several proteins in rat skeletal muscle. The aims were to identify components of muscle fiber basement membrane and to compare the small fraction (0.1%) of the basement membrane that extends through the synaptic cleft at the neuromuscular junction with the remaining, extrasynaptic portion. Synaptic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of Cell Biology
دوره 97 شماره
صفحات -
تاریخ انتشار 1983